Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
а)Сумма углов четырехугольника АВДС равна 360 градусов. Поэтому, чтобы найти угол АСД надо из 360 отнять сумму заданных углов. Т.е. угол ACD= 360-(43+45+ 137)=360-225=135 градусов. б)Угол BDC =45 градусам, ABD=137 градусам, это внутренние односторонние углы при прямых АВ и DC и секущей BD. Для того, чтобы прямые АВ и DC были параллельны, надо чтобы сумма указанных углов была 180 градусов, а у нас 45+ 137= 182, т.е. эти прямые не параллельны, значит, они имеют общую точку и, если АВ и DC продолжить, то они пересекутся.