ответ: гипотенуза =20см
Объяснение: по свойствам угла 30°, катет лежащий напротив него равен половине гипотенузы. Меньший катет будет как раз он, потому что второй острый угол будет 60°, а наибольшая сторона лежит напротив большего угла и наоборот, поэтому катет, который лежит против угла 30° и будет наименьшим. Пусть тогда он будет "х", тогда гипотенуза будет 2х. Так как в сумме они составляют 30см, составляем уравнение:
х+2х=30
3х=30
х=30÷3
х=10; меньший катет=10. Теперь найдём гипотенузу: 2×10=20см.
∠CBF = ∠CBA + ∠ABF
Отсюда
∠CBA = ∠CBF — ∠ABF = 180° — 76° = 104°
Рассмотрим треугольник ABC
Сумма углов треугольника равна 180°:
∠CBA + ∠BAC + ∠ACB = 180°
104° + ∠BAC + ∠ACB = 180°
По условию задачи нам дан равнобедренный треугольник ACB. Согласно свойству равнобедренного треугольника — углы при основании (CA) равны. Т.е. ∠BAC и ∠ACB равны.
Следовательно
∠BAC + ∠ACB = 180° — 104° = 76°
∠BAC = ∠ACB = 76° : 2 = 38°
Рассмотрим треугольник ACO
По условию задачи в треугольнике ABC проведены биссектрисы CL и AM.
По определению, биссектриса делит угол пополам, следовательно
∠CAO = ∠CAB : 2 = 38° : 2 = 19°
∠ACO = ∠ACB : 2 = 38° : 2 = 19°
Сумма углов треугольника равна 180°:
∠CAO + ∠ACO + ∠AOC = 180°
19° + 19° + ∠AOC = 180°
∠AOC = 180° — 19° — 19° = 142°
ответ:
∠AOC = 142°
Как то так не гарантирую что это правильно