1. Понятно, что треугольники A1B1C1 и ABC подобны (стороны параллельны -> углы равны); и даже действительно с гомотетии можно получить из одного другое
2. O- точка пересечения медиан в треугольнике A1B1C1.
3. Медианы делятся точкой пересечения в отношении 2:1, считая от вершины.
Выразим длину медианы o в маленьком треугольнике через медиану большого треугольника O (на примере АА1):
A1O = O/3 = 2o/3,
откуда m = 1/2 O.
Принимая во внимание, что коэф. гомотетии в данном случае отрицательный, ответ
-1/2
1) Рассмотрим треугольник ЕВС - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°. Тогда, ∠ЕВС = 90°-60° = 30°. Против угла в 30 градусов лежит катет, равный половине гипотенузы. ЕВ = 7*2 = 14.
2) Рассмотрим треугольник АВЕ. ∠АЕВ = 180°-60° = 120° (так как он смежный с углом ВЕС). ∠ АВЕ = 180°-120°-30° = 30°. Итак, углы АВЕ и ВАЕ треугольника АВЕ равны, следовательно, он равнобедренный.
3) AE = EB = 14 (это боковые стороны, так как лежат напротив равных углов в одном треугольнике.)
ответ: 14.