CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Срединные перпендикуляры треугольника пересекаются в одной точке - центре описанной около него окружности. Известно, что только в прямоугольном тр-ке центр описанной окружности лежит на одной из его сторон - гипотенузе, причём на её середине, так как он равноудалён от вершин треугольника.
Рассмотрим подробно. Тр-ки АВР и АРС равнобедренные, т.к. РМ⊥АВ и РК⊥АС, ВМ=АМ и АК=КС, значит РМ и РК - высоты и медианы (признак равнобедренности тр-ка). РМ и РК - биссектрисы тр-ков АВР и АРС, углы ВРА и АРС - смежные, значит РМ⊥РК. Углы между соответственно перпендикулярными прямыми равны. РМ⊥АВ, РК⊥АС, РМ⊥РК, значит АВ⊥АС ⇒ ∠А=90°. Доказано.
Объяснение:
1) вписаний кут дорівнює 1/2 дуги, вписаний кут дорівнює 30:2=15°
2) вписаний кут дорівнює 1/2 центрального кута, центральний кут дорівнює 71,5:2=35,75°