Г)
LO=ON=LN:2=3:2=1,5
КО=ОМ=КМ:2=2:2=1
Рассмотрим треугольник КLO:
<KOL=90°,т.к диагонали рамба перпендикулярны,значит квадрат гипотенузы КL равен:
КL^2=LO^2+KO^2=1,5^2 +1^2=2,25+1=3,25
KL=корень из 3,25=примерно 1,8
2)АВС -равнобедренный треугольник,значит ВН- не только биссектриса(дано по условию-рисунку),но высота и медиана треугольника. Медиана делит сторону ,на которую проведена,пополам,значит :
АН=НС=АС:2=4:2=2
Треугольник ВСН:
<ВНС=90°(ВН-высота,медиана и биссектриса)
ВН^2=ВС^2-НС^2=5^2-2^2=25-4=21
ВН=~4,6(приблизительно)
Г)
LO=ON=LN:2=3:2=1,5
КО=ОМ=КМ:2=2:2=1
Рассмотрим треугольник КLO:
<KOL=90°,т.к диагонали рамба перпендикулярны,значит квадрат гипотенузы КL равен:
КL^2=LO^2+KO^2=1,5^2 +1^2=2,25+1=3,25
KL=корень из 3,25=примерно 1,8
2)АВС -равнобедренный треугольник,значит ВН- не только биссектриса(дано по условию-рисунку),но высота и медиана треугольника. Медиана делит сторону ,на которую проведена,пополам,значит :
АН=НС=АС:2=4:2=2
Треугольник ВСН:
<ВНС=90°(ВН-высота,медиана и биссектриса)
ВН^2=ВС^2-НС^2=5^2-2^2=25-4=21
ВН=~4,6(приблизительно)
Рассмотрим окружность с центром в точке О. ОА и ОВ - радиусы окружности, поэтому OA=OB. По теореме о касательных (две пересекающиеся касательные равны) эти треугольники равны по углу (угол радиуса к касательной всегда прямой по свойству касательной) и прилежащим к ней сторонам, а отсюда следует, что углы АМО и ОМВ равны (только они как-бы в зеркальном оторбражении). (1)
Кроме того, по правилу зеркальной симметрии, OB = BC, а также углы BMC и OMB равны. (2)
Следует отметить, что угол AMC содержит все три угла.
Из (1) и (2) следует, что углы АМО, BMC и ОМВ равны, а значит, если считать один их этих углов равным одной части, то весь угол AMC равен трём частям.
Иными словами, AMC = 3BMC, что и требовалось доказать.