Расстоянием от точки до прямой называет длина перпендикуляра, проведённого из этой точки на прямую. Поэтому надо найти длину перпендикуляра. Пусть длина перпендикуляра равна x, тогда длина наклонной равна y. Составим систему уравнений, учитывая, что x + y = 17, а y - x = 1
x + y = 17 2y = 18 y = 9
y - x = 1 y - x = 1 x = 8
Длина перпендикуляра равна 8, поэтому и искомое расстояние тоже равно 8.
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13