Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.
Допустим трапеция ABCD: BC||AD ,BC =2 см,AD =18 см , AC =15 см , BD =7 см .
S =S(ABCD) -? Одной из вершин проведем линия параллельную диагонали, для определенности из C: CE || BD ( D ∈ (AD )) .BCED _параллелограмма ⇒DE =BC = 2 см ; CE =BD =7 см ; AE =AD +DE =AD+BC =18 см+2 см=20 см.
S(ABCD) =((AD+BC)/2*)H = (AE/2)*H= S(ACE) . Площадь треугольника ACE можно определить по формуле Герона : S(Δ) =√( p(p-a)(p-b)(p-c) ) ;p =(a+b+c)/2 . S = √(21*(21-20)*(21-7)*(21-15)) =√(21*1*14*6)=√(7*3 *7*2*6) = 7*6 =42 (см²). ответ : 42 см².
Для треугольника утверждение неверно, например, можно рассмотреть треугольник с углами 70, 60, 50 градусов.
Предположим, что во многоугольнике (число углов больше 3) нет ни одного тупого угла. Тогда каждый угол не превосходит 90 градусов, а сумма всех n углов меньше 90n (все углы, кроме, быть может, одного, являются острыми). Сумма углов n-угольника равна 180(n-2), тогда 180(n-2)<90n, откуда 2(n-2)<n, 2n-4<n, n<4, получили противоречие с тем, что число углов больше 3. Значит, любой многоугольник с неравными углами (если углов 4 и больше), имеет хотя бы один тупой угол, что и требовалось доказать.
CF : KF = AE : KE
Объяснение:
Так как угол ВСЕ= 90 градусов -угол В/2, то угол ВСЕ=углу ВЕС, а значит ВЕ=ВС.
поэтому CF/KF=BE : BK = BC : BK и AE : KE = CA : CK = BC : BK.
Пусть прямая EF пересекает AC в точке D. По теореме Менелая
AD/CD*CF/KF*KE/AE=1
Учитывая, что CF : KF = AE : KE, получаем требуемое