Сторона правильного четырехугольника,описанного около окружности,равно 2.найдите сторону правильного треугольника ,описанного около этой же окружности. ))
Если построить на стороне ВС, как на диаметре, окружность, и провести касательную к ней параллельно ВС, то все точки этой касательной будут лежать на одинаковом расстоянии от прямой ВС (от всей прямой, не только отрезка, но и продолжения), равном половине ВС. Поэтому эта касательная - это геометрическое место возможных вершин А. Ясно, все точки этой прямой, за исключением точки касания, лежат за пределами окружности. Легко показать, что если вершина А не совпадает с точкой касания, то угол А меньше прямого. Для этого достаточно соединить точку С с точкой пересечения окружности и АВ, пусть это точка Е, при этом получится прямой угол ВЕС, и заметить, что этот прямой угол равен сумме угла А и угла АВЕ, не равного 0. Поэтому максимальное значение угла А равно 90 градусам, когда точка А - это касательная к этой окружности. Треугольник ВСА при этом равнобедренный.
Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
радиус вписанной окр в прав 4-угольник: r=1/2a =1/2*2 = 1
радиус вписанной окр в прав тр-к: r=a/2√3 ⇒ a=1/(2√3)