Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Меньший катет равен √(9^2 + 15^2) = 3*√34;
Больший катет равен √(25^2 + 15^2) = 5*√34;
Ну да, еще периметр 34 + 8*√34 ;