Диагонали AC и BD трапеции ABCD пересекаются в точке O. Площади треугольников AOD и BOC равны соответственно 16 см² и 9 см². Найдите площадь трапеции.
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
Найдем S(AOB):
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
ответ:49
3х=30
х=10 ответ:Боковые стороны =10;Основание=15
2)х+х+4х+4х=360
10х=360
х=36 ответ:два угла=36;другие два=144
3)х+2х+2х=40
5х=40
х=8 ответ:боковые стороны=16;основание=8
4)доказательство:
1.Рассмотрим треуг BMD и теуг BKD:
1)BD-общая
2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный)
3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой)
Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников)
5)Доказательство:
рассмотрим два треугольника:
1)одна сторона будет общая
2)углы при основании равны
3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой)
следовательно,треугольники,которые образовала высота,будет равны!
6)не знаю(точнее не уверенна)
7)а)х+4х+4х-90.
9х=270
х=30 ответ:А=30;В=120;С=30
б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)