Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.
Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Так как треугольник равнобедренный,то его боковые стороны равны,мы не знаем какую они имеют длину,поэтому обозначим за Х,но мы знаем что каждая боковая сторона на 2 больше основания,следовательно основание у нас будет Х,а каждая боковая сторона Х + 2 Решение выглядит таким образом: Х + 2(Х + 2) = 10 Х + 2Х + 4 = 10 3Х + 4 = 10 3Х = 10 - 4 3Х = 6 Х = 6 : 3 Х = 2 Следовательно боковая сторона 2 + 2 = 4,вторая боковая сторона тоже 4,т.к. треугольник равнобедренный,а основание это просто Х а следовательно равно 2
ВС= 6 см; P=15 см; S=5√3 см²; R= 2√3 см.
Объяснение:
Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.
Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
ВС²=АВ²+АС²-2·АВ·АС·sinA;
\begin{gathered}BC^{2} =4^{2} +5^{2} -2\cdot4\cdot 5\cdot cos60^{0} ;BC^{2} =16+25-2\cdot20\cdot \dfrac{1}{2} ;\\BC^{2} =16+25-5;\\BC^{2}=36;\\BC=6.\end{gathered}
BC
2
=4
2
+5
2
−2⋅4⋅5⋅cos60
0
;
BC
2
=16+25−2⋅20⋅
2
1
;
BC
2
=16+25−5;
BC
2
=36;
BC=6.
Тогда ВС= 6 см
Периметр треугольника - сумма длин всех сторон треугольника.
\begin{gathered}P=AB+AC+BC;\\P=4+5+6=15\end{gathered}
P=AB+AC+BC;
P=4+5+6=15
см.
Найдем площадь треугольника по формуле.
\begin{gathered}S=\dfrac{1}{2} \cdot AB\cdot AC\cdot sin60^{0} ;S=\dfrac{1}{2}\cdot 4\cdot 5\cdot \dfrac{\sqrt{3}}{2} =5\sqrt{3}\end{gathered}
S=
2
1
⋅AB⋅AC⋅sin60
0
;
S=
2
1
⋅4⋅5⋅
2
3
=5
3
см².
Радиус окружности, описанной около треугольника определим по формуле.
R=\dfrac{a}{2\cdot sin\alpha }R=
2⋅sinα
a
R=\dfrac{6}{2\cdot sin 60^{0} } =\dfrac{6}{2\cdot\dfrac{\sqrt{3} }{2} } =\dfrac{6}{\sqrt{3} } =\dfrac{6\sqrt{3} }{3} =2\sqrt{3} .R=
2⋅sin60
0
6
=
2⋅
2
3
6
=
3
6
=
3
6
3
=2
3
.
R=2√3 см.