Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру:
r=S/p
Найдём полупериметр треугольника:р=(20+2*26):2=36 см
Найдём площадь треугольника:
1)найдём высоту h,проведённую к основанию в 20 см и образовавшую прямоугольный треугольник с катетом, равным половине основания (20:2=10 см ) и гипотенузой в 26 см.
По теореме Пифагора находим высоту
h=√с²-в²=√26²-10²=√676-100=√576=24 см
б)найдём площадь S=1/2аh=1/2*20*24=240 см²
r=S/p=240:36≈6,7 см
№2
ME=3 см MN=12 см
ЕN= MN-МЕ=12-3=9 см
ME*ЕN=PE*KE(по свойству пересекающихся хорд)
PE=KE,поэтому ME*ЕN=2*PE
Принимаем РЕ за х,тогда 3*9=2х,т.е. хорда РК=хорде MN=27 см
Если от вас требуют доказать это,то
2х=27
х=27:2
х=13,5 см -РЕ
РК=2*РЕ=2*13,5=27 см
В условии допущена опечатка: не может хорда MN быть меньше своей собственной части ME.Поэтому решила по отредактированному условию.
В треугольнике АВС: <A=60°, <C=45°, высота ВН=5 см. В прямоугольном треугольнике АВН катет АН равен АН=ВН*tg30° или АН=5*(√3/3) см. Или так: В прямоугольном треугольнике АВН гипотенуза АВ=2*АН (АН - катет против угла 30°). Тогда по Пифагору 4АН²-АН²=25 или 3*АН²=25. АН=5√3/3. В прямоугольном треугольнике СВН угол СВН равен 45°, так как сумма острых углов прямоугольного треугольника равна 90°. Это равнобедренный треугольник и ВН=НС=5 см. Тогда АС=АН+НС или АС=5√3/3 + 5 = (5√3/3+15)/3 см. Площадь треугольника равна S=(1/2)*BH*AC или Sabc=(1/2)*5*((5√3/3 +15)/3)=25(√3+3)/6 ≈ 118,3/6 ≈19,72 см. ответ: Sabc≈19,72 см.
Объяснение:
№1
Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру:
r=S/p
Найдём полупериметр треугольника:р=(20+2*26):2=36 см
Найдём площадь треугольника:
1)найдём высоту h,проведённую к основанию в 20 см и образовавшую прямоугольный треугольник с катетом, равным половине основания (20:2=10 см ) и гипотенузой в 26 см.
По теореме Пифагора находим высоту
h=√с²-в²=√26²-10²=√676-100=√576=24 см
б)найдём площадь S=1/2аh=1/2*20*24=240 см²
r=S/p=240:36≈6,7 см
№2
ME=3 см MN=12 см
ЕN= MN-МЕ=12-3=9 см
ME*ЕN=PE*KE(по свойству пересекающихся хорд)
PE=KE,поэтому ME*ЕN=2*PE
Принимаем РЕ за х,тогда 3*9=2х,т.е. хорда РК=хорде MN=27 см
Если от вас требуют доказать это,то
2х=27
х=27:2
х=13,5 см -РЕ
РК=2*РЕ=2*13,5=27 см
В условии допущена опечатка: не может хорда MN быть меньше своей собственной части ME.Поэтому решила по отредактированному условию.