По условию Δ равнобедренный. две его стороны обозначим а, угол между ними =180°-30° *2=120° SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2) 64√3=(1/4)a²√3, a²=256, a=16 основание Δ обозначим с. рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания. cos 30°=(c/2)/a √3/2=(c/2)/16, √3/2=c/32, c=16√3 ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2. пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы) по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3 SΔ=(1/2)*c*h 64√3=(1/2)*2x√3*x 64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см ответ: 16,16 и 16√3
ответ:
контрольная 2:
1) рассмотрим треугольники aod и сов:
ао=ов
со=od
угол aod = угол сов, т к они вертикальные
трегольник аоd = трегольник сов по 1 признаку
2)т.к треугольник авс - равнобедренный, то ак - биссектриса и медиана => ск = кв = сd/2 = 12
рассмотрим треугольник акв:
ак = 16
кв = 12
ав = 20
р = ак + кв + ав = 16 + 12 + 20 = 48
3)т.к. угол м = угол n, то треугольник мкn - равнобедренный => мк=кn
p=mk+kn+mn=170
mk+kn=170-54
mk+kn=116
mk=kn=116: 2=58
4) ab=x
ac=x+10
bc=2x
x+x+10+2x=70
4x+10=70
4x=60
x=15
ac=15+10=25
bc=15*2=30
5)т.к. см и ак - медианы, то ам=ск => треугольники амс и акс равны по 1 признаку => углы амс и акс равны