См. Объяснение.
Объяснение:
1) При пересечении AB и CD образуются два равных треугольника:
ΔАОС = ΔDОB, так как две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника (первый признак равенства треугольников), а именно:
АО = ОВ - согласно условию;
DO = ОС - согласно условию;
∠АОС = ∠DОB - как углы вертикальные.
2) В равных треугольниках против равных углов лежат равные стороны:
АС и BD лежат против равных углов ∠АОС и ∠DОB, следовательно:
АС=BD, - что и требовалось доказать.
6. Правильные 4-, 5-, 10-, 20-, 25-, 50- угольники.
Объяснение:
Если указывать правильный n-угольник на данных вершинах, то между парами соседних вершин нового многоугольника будет пропущено одинаковое количество k вершин старого многоугольника (выбираем вершины через k). С учетом того, что всего вершин было 100,
n * (k + 1) = 100.
n > 2 (число вершин в новом многоугольнике - n)
100 = 2 * 2 * 5 * 5 = 2² * 3²
Всего разложений на два множителя с учетом порядка:
3 * 3 = 9 (в точности количество различных делителей)
Среди них не подходят те, в которых n=1 или n=2 (они, очевидно, встречаются и ровно по одному разу) и n=100 (исходный 100-угольник). Итого 6 правильных многоугольников.
Можно получить этот же ответ в явном виде.
Распишем всевозможные разложения на два множителя (с учетом порядка) числа 100:
100 = 1 * 100 - n=1, k=99 - не подходит (n > 2)
100 = 2 * 50 - n=2, k=49 - не подходит (n > 2)
100 = 4 * 25 - n=4, k=24 - подходит
100 = 5 * 20 - n=5, k=19 - подходит
100 = 10 * 10 - n=10, k=9 - подходит
100 = 20 * 5 - n=20, k=4 - подходит
100 = 25 * 4 - n=25, k=3 - подходит
100 = 50 * 2 - n=50, k=1 - подходит
100 = 100 * 1 - n=100, k=0 - исходный 100-угольник
В трапеции основания АД и ВС равны 36 и 12, а сумма углов при основании АД равна 90º
Найдите радиус окружности, проходящей через точки А и В и касающейся прямой СД, если АВ=10
Для успешного решения задачи очень важно сделать правильный рисунок.
Из того, что сумма углов при основании АД равна 90º, следует, что продолжение АВ и СД пересекаются под углом 90º.
Достроим трапецию до прямоугольного треугольника АКД
Рассмотрим рисунок.
Не составит труда доказать, что треугольники ВКС и АКД - подобны.
∠ К в них - общий,
ВС||АД,
∠ КСВ=∠КДА по свойству углов при пересечении параллельных прямых секущей.
Коэффициент подобия АД:ВС=36:12=3
Тогда АК:ВК=3
АК=АВ+ВК
(АВ+ВК):ВК=3
(10+ВК):ВК+3
10+ВК=3ВК
2ВК=10
ВК=5
Пусть точка касания окружности и прямой СД будет М
Соединим центр О окружности с вершиной В трапеции и точкой касания М.
Так как углы ОМК и АКМ прямые, ОМ и АК - параллелльны.
Рассмотрим треугольник АОВ.
Его стороны АО и ОВ, являясь радиусами окружности, равны.
Треугольник АОВ - равнобедренный.
Проведем в нем высоту ОН.
Эта высота - и медиана ( треугольник ведь равнобедренный).
Следовательно, НВ =5.
Рассмотрим четырехугольник НКМО.
Это прямоугольник с равными сторонами НК=МО.
МО - радиус окружности.
НК=НВ+ВК=5+5=10
МО=НК=10
Радиус окружности равен 10.