30,40,110 градусов
Пусть А и С Основания перпендикуляров опущенных из точки М на стороны данного угла с вершиной О,Точка В Основание перепендикуляра опущенного из точки М на луч,проходящий между сторонами угла АОС причём АОВ = 30градус и СОВ =40градус.Из точек А В С отрезок ОМ виден под прямым углом значит эти точки лежат на окружности с диаметром ОМ Вписанные в эту окружность углы АСВ и АОВ опираются на одну и ту же дугу поэтому АСВ = АОВ = 30градус.Анологично ВАС=СОВ =40градус Следовательно АВС = 180градус - 30градус - 40=110
Объяснение:
1) aob=180-23=157 градусов(смежные)
aod=boc=23 градуса(вертикальные)
cod=aob=157 градусов(вертикальные)
2)Так как doe=coe(по условию) следовательно угол cod= doe+coe= 32+32=64 градуса
угол boc=180 - угол cod=180-64=116 градусов( смежные)
3)угол eod=aob=55 ( вертикальные)
угол foe=180- eod-doc=180-55-25=100 градусов
4) Так как угол doa+aoc=180 (смежные) следовательно угол cob=210-180=30 градусов
угол dob+cob=180(смежные) значит угол dob=180-30=150 градусов
угол aod=cob=30 (вертикальные)
5)Угол aoc=aob+boc=a(альфа)+b(бетта)
Угол aof=180-aoc=180-a-b(смежные)
6) угол aob=180-foa-boc=180-b-a
eod=aob=180-b-a(вертикальные)
Формула объема конуса V=πr²•h/3. Сделаем рисунок, соразмерный условию. АВ и ВС - образующие конуса, АС - его диаметр, ВН - высота. О- центр описанной сферы, ОС=ВО=R=2. Для решения задачи требуется вычислить радиус НС(r) конуса и его высоту ВН.
Наибольший угол между образующими – это ∠ АВС осевого сечения конуса. Все образующие конуса равны. По свойству равнобедренного треугольника в ∆ АВС высота=биссектриса=медиана. Поэтому ∠НВС=120°:2=60°. ОВ=ОС=R, ⇒ ∠ВСО=угол ОВС=60°, поэтому ∆ ВОС равносторонний. Радиус основания конуса СН=ОС•sin60°=2•(√3)2)=√3. Высота ВН=R:2=1 ⇒ V=π(√3)²•1/3=π (ед. объема)