По сути, у ромба диагонали пересекаются под прямым углом, все стороны равны, тогда и треугольники (их 4), образованные диагоналями и сторонами тоже будут равны. рассмотрим один такой треугольник (назовём его АВО, где О - точка пересечения диагоналей, АВ - сторона ромба), он будет прямоугольным, т.к. (уже говорилось выше) диагонали пересекаются под прямым углом. этот угол в данном треугольнике - АОВ. площадь этого треугольника = 1/2 АО*ВО (это катеты). так и все остальные треугольники. площадь всего ромба = сумма площадей всех треугольников. тогда Sabcd = 4*1/2*АО*ВО = 2*АО*ВО. а т.к. АО=1/2 АС, а ВО=1/2 ВD, Sabcd = 2* 1/2*АС *1/2*ВD = 1/2 АС*ВD. что и требовалось доказать.
периметр равностароннего треугольникаравен 45 см. логично что если все стороны у треугольника равны то 45 нужно делить на 3 и получить результат 45:3=15 Равнобедренный треугольник имеет основание,равное 7см, и одну боковую сторону, равную 3 см. в равнобедренном треугольнике всегда 2 стороны равны так что или 3+3+7=13 или 3+7+7=17.
Даны координаты вершин треугольника ABC: A ( 1, 4); B( 4, 1); C(-1, 3).
Находим координаты точки Е как середины ВС.
Е = (B( 4, 1); C(-1, 3))/2 = (1,5; 2).
Определяем вектор:
АЕ = (1,5-1; 2-4) = (0,5; -2).
Теперь находим уравнение АЕ.
(x - 1)/0,5 = (y - 4)/(-2) или в общем виде 4х + у - 8 = 0.
ответ: 4х + у - 8 = 0.