AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
Находим векторы АВ и АС.
АВ = (-6; 0; -9), модуль равен √117 ≈ 10,81665383.
АС = (3; -4; -2), модуль равен √29 ≈ 5,385164807.
Площадь треугольника равна половине модуля векторного произведения векторов АВ и АС.
i j k| i j
-6 0 -9| -6 0
3 -4 -2| 3 -4 = 0i - 27j + 24k - 12j - 36i - 0k =
= -36i - 39j + 24k.
Модуль равен √((-36)² + (-39)² + 24²) = √3393 ≈ 58,24946352.
Площадь равна: S = (1/2)√3393 ≈ 29,12473176
.