8. в прямоугольном треугольнике авс с=90° и а=30°, проведена медиана см и биссектриса md δсма. найдите md, если вс=23см.
дано: δавс, с=90°, а=30°, см-медиана с, мd – биссектриса δсма, вс=23см.найти: md.решение: т.к. см – медиана, то см-вм=ма=0,5авт.к. а=30° и вс=24см, то ав=46см и = см=вм=ма=23см.т.к. см=ма, то δсма равнобедренный, следовательно, мd – высота.т.к. а=30°, аdm= 90° и ма=23см, то md=0,5ма= 11,5см.ответ: md=11,5см.
Чертеж во вложении. Пусть точки В и С - это точки касания окружностей одной из сторон угла А. Т.к. две окружности касаются друг друга внешним образом (К - точка касания) и вписаны в угол А, то центры окружностей - точки О и Е - лежат на биссектрисе угла А. Значит, ∠САЕ=30°. По свойству касательной радиус ОВ⊥АС и радиус ЕС⊥АС. Пусть ЕС=х см, тогда ЕК=х см и ОЕ=6+х см. В прямоугольном ∆АОВ АО = 2ОВ=2*6=12 см (гипотенуза и катет в треугольнике с углом в 30°) Прямоугольные ∆АОВ и ∆АЕC подобны по двум углам. Значит,
7. один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 18 см. найдите гипотенузу и меньший катет.
дано: δавс, с=90°, а=60°, ав+ас=18смнайти: ав, ас.решение: в=90° – 60°=30°, значит, ас – меньший катет, тогдаас=0,5авав+0,5ав=18ав=12см, ас=6смответ: ав=12см, ас=6см.8. в прямоугольном треугольнике авс с=90° и а=30°, проведена медиана см и биссектриса md δсма. найдите md, если вс=23см.
дано: δавс, с=90°, а=30°, см-медиана с, мd – биссектриса δсма, вс=23см.найти: md.решение: т.к. см – медиана, то см-вм=ма=0,5авт.к. а=30° и вс=24см, то ав=46см и = см=вм=ма=23см.т.к. см=ма, то δсма равнобедренный, следовательно, мd – высота.т.к. а=30°, аdm= 90° и ма=23см, то md=0,5ма= 11,5см.ответ: md=11,5см.