ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
V_цилиндра = pi*r^2*h= pi * 41 * 8 =328pi
V_конуса = 1/3*pi*(r_конуса)^2*h_конуса = 1/3*pi*41*4 =123/3*pi
V_тела вращения = V_цилиндра - 2*V_конуса = 328pi - 246/3*pi = (328-82)pi = 246pi
а) радіус R кола, описаного навколо основи піраміди.
Радиус R равен половине диагонали квадрата основания.
Проекция апофемы на основание равна 4 см, так как равна высоте пирамиды.
Тогда половина диагонали равна 4√2 см и равна R.
ответ: R = 4√2 см.
б) радіус r кола, вписаного в основу піраміди.
Радиус r равен половине стороны основания и равен проекции апофемы на основание (найдена выше).
ответ: радиус r равен 4 см.
в) площу основи піраміди.
Сторона основания а = 2r = 2*4 = 8 см.
ответ: S = a² = 8² = 64 см².
ответ
решение в фото
s = 20,78