3.29. Параллелограмм и прямоугольник, имеют равные стороны. Площадь прямоугольника и два раза больше площади параллелограмма. Най- дите острый угол параллелограмма.
1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Начертите прямоугольный треугольник и опишите вокруг него окружность. Любой прямоугольный треугольник опирается на диаметр описанной окружности, т.е. его гипотенуза = диаметру окружности. Следовательно, медиана, которая делит гипотенузу пополам, будет падать на середину диаметра - т.е. центр окружности. Половины диаметра - это радиусы окружности. Т.к. вершина прямого угла треугольника лежит на окружности, а медиана падает в её центр, значит медиана - это радиус окружности. Радиус одинаков по всей окружности. А если медиана - это радиус, и половины гипотенузы - тоже радиусы, делаем вывод, что медиана равна половине гипотенузы. Т.е. гипотенуза в целом будет равна 2-м медианам: 8+8=16.
30 градусов
Объяснение:
пусть
а-длина
b-ширина прямоугольника
тогда его площадь равна аb
тогда а-длина основания параллелограмма:
b-длина боковой стороны параллелограмма
его площадь равна а*h,где h-высота параллелограмма
высота параллелограмма является противолежащим катетом
значит он равен b*sinα,где α-острый угол параллелограмма.Из условия
аb=2 а*h=2аb*sinα,
отсюда
sinα=аb/2аb=1/2
значит α=30°