Нормальный вектор заданной плоскости и будет направляющим вектором для заданной прямой.
Находим нормальный вектор как результат векторного произведения АВ х АС.
АВ: (-1; 1; 3), АС: (2; 2; -1).
i j k | i j
-1 1 3 | -1 1
2 2 -1 | 2 2 = -1i + 6j -2k -1j - 6i - 2k =
= -7i + 5j - 4k = (-7; 5; -4).
Теперь подставляем координаты точки М и получаем уравнение.
(x - 1)/(-7) = (y - 2)/5 = (z - 3)/(-4).
Меньший катет равен половине гипотенузы, так как он лежит против угла в 30 градусов. пусть х - меньший катет, тогда гипотенуза равна 2х. х + 2х = 26,4 3х = 26,4 х = 8,8 2х = 17,6 - гипотенуза. как то так)). ответ разместил: Гость. сейчас я попробую, что-нибудь решить. я же всё-таки не знаток, мне недавно 16 исполнилось. s1(площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=sqrt3/4*a*a. s2(площадь тетраэдра)=s1*4(так как в тетраэдре 4 равносторонних треугольника)=sqrt(3)*a*a=30*sqrt3. то есть a*a=30.
по моему так