М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1234мика
1234мика
07.06.2021 13:07 •  Геометрия

с задачей на тему :"Свойства углов параллельных прямых" ​


с задачей на тему :Свойства углов параллельных прямых ​

👇
Ответ:
Nadezhdakarpov1
Nadezhdakarpov1
07.06.2021

∠DCB = 68°

Объяснение:

АD ║ BE

∠DCB - ?

∠ЕBA = ∠BAD - накрест лежащие (свойство параллельных прямых)

∠BAD = 25°

Теперь найдем ∠ACD

Возьмем треугольник ΔACD

∠BAD = 25°

∠CDA = 43°

Чтобы найти третий угол надо вычесть из суммы всех углов треугольника (это всегда 180°) оставшиеся

180° - 43° - 25° = 112°

Теперь вспомним про смежные углы

Его нахождение почти такое же только из 180 вычитаем один угол (логично)

180° - 112° = 68°

∠DCB = 68°

4,5(49 оценок)
Открыть все ответы
Ответ:
Рара15рара1
Рара15рара1
07.06.2021
1. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Дано: ω (О; ОА), СА и СВ - касательные (А и В - точки касания).
Доказать: СА = СВ, ∠АСО = ∠ВСО.
Доказательство:
Проведем радиусы в точки касания. Они перпендикулярны касательным (по свойству касательной).
∠САО = ∠СВО = 90°,
ОА = ОВ как радиусы,
ОС - общая гипотенуза для треугольников САО и СВО, ⇒
ΔСАО = ΔСВО по катету и гипотенузе.
Следовательно, СА = СВ и ∠АСО = ∠ВСО.
Доказано.

2. Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.

3.  Соединяем данную точку А с центром окружности.
Проводим перпендикуляр к полученному радиусу, проходящий через данную точку. Для этого на луче ОА откладываем отрезок АВ = ОА.
Строим две окружности равного радиуса (произвольного, но больше половины отрезка ОВ) с центрами в точках О и В.
Через точки пересечения окружностей проводим прямую а. Это и есть прямая, перпендикулярная радиусу ОА.
Прямая а  - касательная к окружности.
4,8(56 оценок)
Ответ:
OlegJexLP
OlegJexLP
07.06.2021
1. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Дано: ω (О; ОА), СА и СВ - касательные (А и В - точки касания).
Доказать: СА = СВ, ∠АСО = ∠ВСО.
Доказательство:
Проведем радиусы в точки касания. Они перпендикулярны касательным (по свойству касательной).
∠САО = ∠СВО = 90°,
ОА = ОВ как радиусы,
ОС - общая гипотенуза для треугольников САО и СВО, ⇒
ΔСАО = ΔСВО по катету и гипотенузе.
Следовательно, СА = СВ и ∠АСО = ∠ВСО.
Доказано.

2. Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.

3.  Соединяем данную точку А с центром окружности.
Проводим перпендикуляр к полученному радиусу, проходящий через данную точку. Для этого на луче ОА откладываем отрезок АВ = ОА.
Строим две окружности равного радиуса (произвольного, но больше половины отрезка ОВ) с центрами в точках О и В.
Через точки пересечения окружностей проводим прямую а. Это и есть прямая, перпендикулярная радиусу ОА.
Прямая а  - касательная к окружности.
4,8(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ