1. От точки А строим угол, равный данному (описано в первом варианте) и на полученной второй его стороне откладываем отрезок АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на прямую "а". Для этого: Из точки В проводим окружность любого радиуса R, чтобы пересекла прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр. На пересечении прямых ВМ и "а" ставим точку С. Соединяем точки А,В и С и получаем прямоугольный треугольник АВС с прямым углом <C и с заданными гипотенузой и острым углом. 2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен. 3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С. Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
Если угол ромба = 60 град, то меньшая диагональ = стороне ромба (эта диагональ разбивает ромб на два равных равносторонних треугольника)
Р=5*4=20 (см)