Пусть x - гипотенуза.
Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
ответ: 17,6 см
или так
Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
х+2х = 26,4
3х= 26,4
х = 8,8
1. 8,8 * 2 = 17,6 см
ответ 17,6 см.
А вот так если?
Раз равны две медианы, то равны и отрезки от вершин до точки пересечения медиан (ну это же 2/3 от длины). Поэтому треугольник, образванный частями равных медиан и стороной, соединяющей их (медиан) концы (или начала? - ну, понятно, это та сторона, из концов которой выходят равные медианы :)), является равнобедренным. Это просто задано в условии. Но третья медиана треугольника (точнее, ее часть от точки пересечения медиан до стороны) является медианой и в этом треугольнике. То есть она перпендикулярна стороне. Поэтому вершина исходного треугольника лежит на перпендикуляре к стороне, проведеном через ее середину, то есть равноудалена от вершин - концов этой стороны. ЧТД.