Найдем площадь оснований, 2*(6*4/2)=24/см²/, найдем сторону Аодин штрих А три штрих по теореме ПИфагора, т.к. Атри штрих А два штрих делится медианой пополам и медиана проведена к основанию равнобедренного треугольника. √3²+4²=5/см/
Вычислим высоту призмы она равна А один А один штрих из треугольника А один А один штрих А три, А один А три умноженное на тангенс угла Аодин штрих Атри А один, т.е. 5*√3=5√3 /см/
Найдем боковую поверхность призмы, умножив периметр основания 5+5+6=16 на высоту 5√3, получим 80√3/см²/, а сложив площади оснований с боковой поверхностью, получим площадь полной поверхности (80√3+24) см²
Среднюю линию трапеции назовём NE, а точку пересечения биссектрисой NE назовём K.
Так как ∠BAD = ∠CAD, а NE||AD, то ∠NKA = ∠CAD = ∠ BAD.
Из этого следует, что треугольник ANK - равнобедренный т.е. AN = NK = 13.
Найдём периметр.
Мы знаем, что средняя линия находится по формуле (AD + BC)/2, значит BC + AD = (13 + 23)*2 = 72.
Боковая сторона равна 13*2 = 26 т.к. средняя линия разделила её на две равные части AN и NB, a AN = 13.
P = 26*2+72 = 124 см.
Теперь нам надо найти высоту для того, чтобы вычислить площадь, которую можно найти по формуле 1/2(AD + BC) * h.
Благодаря свойству биссектрисы трапеции мы знаем, что биссектриса отделяет от основания часть равную боковой стороне биссектрисы т.е. BC = AB =26.
Из это следует, что AD = 72 - 26 = 46.
Теперь проведём высоту CH. Чтобы её найти нам сначала нужно узнать длину отрезка HD. Для этого мы из основания AD вычтем основание BC и поделим результат на 2 т.к. трапеция равнобедренная. (т.е. если я прочерчу биссектриссу BH, то AH будет равна HD) Получаем, что HD = (46-26)/2 = 10.
Теперь с теоремы Пифагора найдём CH.
CD^2 = HD^2 + CH^2.
CH^2 = CD^2 - HD^2 = 26^2 - 10^2 = 676 - 100 = 576
CH = √576 = 24.
Теперь можем найти площадь.
S = 1/2 * 72 * 24 = 864.
ответ: S = 864 см^2, а P = 124 см.