Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
b=mctga c=m/sina.По условии задачи основание высоты пирамиды является центром вписанной в основание пирамиды.Тогда
r=m+mctga-m/sina= m(1+ ctga-1/sina).
вычислим высоту пирамиды и площадь основания пирамиды:
H = m(1+ ctga-1/sina)tgb
Sосн=m*m ctga/2=m^2 ctga/2
V= Sосн *Н/3
V= m(1+ ctga-1/sina)tgb* m^2 ctga/6=m^3 (1+ ctga-1/sina)tgb* ctga/6
V= m^3 (1+ ctga-1/sina)tgb* ctga/6