Высота правильной пирамиды имеет основание в точке пересечения высот основания.
В основании правильной треугольной пирамиды лежит правильный треугольк. Значит в нем высоты медианы и биссектрисы совпадают и равны между собой.
Рассмотрим основание пирамиды. Найдем в нем высоту основания по теореме Пифагора
высота основания = а * (корень из 3) /2
По свойству медиан расстояние от вершины треугольника в основании пирамиды до точки пересечения медиан = (2/3) * высоты = (2/3)* а * (корень из 3) /2 = а * (корень из 3) /3
Этот отрезок, боковое ребро пирамиды и высота пирамиды образуют прямоугольный треугольник. По теореме Пифагора находим высоту пирамиды
S = (a + b)*h/2 Где a - одно основание, b - второе основание, h- высота. Проведем эту высоту так, как показано на рисунке. Не трудно догадаться, что высота образует прямой угол, а это значит, что для того, чтобы найти внутренние углы, нужно из 135-90=45. У нас получается угол в 45 градусов, для того, чтобы найти острый угол трапеции, нужно : 180-(90+45)=45. У нас получается равнобедренный треугольник, где h=q; Для того, чтобы найти h, нам нужно : b-a=q (где q=h,как я уже писал выше); 6-3=3 (высота); Ну а теперь, когда нам все известно, найдем площадь : S=(3+6)*3/2=27/2=13.5
S = (a + b)*h/2 Где a - одно основание, b - второе основание, h- высота. Проведем эту высоту так, как показано на рисунке. Не трудно догадаться, что высота образует прямой угол, а это значит, что для того, чтобы найти внутренние углы, нужно из 135-90=45. У нас получается угол в 45 градусов, для того, чтобы найти острый угол трапеции, нужно : 180-(90+45)=45. У нас получается равнобедренный треугольник, где h=q; Для того, чтобы найти h, нам нужно : b-a=q (где q=h,как я уже писал выше); 6-3=3 (высота); Ну а теперь, когда нам все известно, найдем площадь : S=(3+6)*3/2=27/2=13.5
Высота правильной пирамиды имеет основание в точке пересечения высот основания.
В основании правильной треугольной пирамиды лежит правильный треугольк. Значит в нем высоты медианы и биссектрисы совпадают и равны между собой.
Рассмотрим основание пирамиды. Найдем в нем высоту основания по теореме Пифагора
высота основания = а * (корень из 3) /2
По свойству медиан расстояние от вершины треугольника в основании пирамиды до точки пересечения медиан = (2/3) * высоты = (2/3)* а * (корень из 3) /2 = а * (корень из 3) /3
Этот отрезок, боковое ребро пирамиды и высота пирамиды образуют прямоугольный треугольник. По теореме Пифагора находим высоту пирамиды
= корень из ( б^2 - (а * (корень из 3) /3)^2 ) =![\frac{\sqrt[2]{3}}{3} * (\sqrt[2]{3b^{2} - a^{2}}](/tpl/images/0169/4928/bda41.png)