Развёрткой боковой поверхности цилиндра служит прямоугольник, диагональ которого, равная 12пи, составляет с одной из сторон угол 30 градусов
диагональ боковой поверхности цилиндра d=12пи
высота цилиндра h=d*sin30=12pi*1/2=6pi <высота равна меньшей стороне развёртки
большая сторона развертки b=d*cos30=12pi*√3/2=6pi√3
большая сторона развертки b - это длина окружности ОСНОВАНИЯ b=2pi*R
радиус основания R=b/(2pi) = 6pi√3 / (2pi)=3√3
площадь основания So=pi*R^2 = pi*(3√3)^2=27pi <два основания
площадь боковой Sb=b*h=6pi√3*6pi=36pi^2√3
площадь полной поверхности цилиндра S=Sb+2So=36pi^2√3+2*27pi=36pi^2√3+54pi
ОТВЕТ
36pi^2√3+54pi
36√3pi^2+54pi
18pi (2√3pi+3)
** возможны другие варианты ответа
гипотенуза делится на 2 отрезка: 10х и 3х (х длина одной части гипотенузы); 2) из одной вершины треугольника две касательные равные: 3х; из второй вершины две касательные равные: 10х; из третьей вершины две касательные равные: у; 3) гипотенуза равна 3х+10х=13х; один катет равен 3х+у; второй катет равен 10х+у; 4) радиус вписанной окружности в прямоугольный треугольник находится по формуле: r=(a+b-c)/2; 5)подставим наши значения: 4=(3х+у+10х+у-13х)/2; 2у=8; у=4; 5) значит, один катет равен 3х+4; второй катет равен 10х+4; по теореме Пифагора: (13х)^2=(3х+4)^2+(10х+4)^2; 169х^2=9х^2+24х+16+100х^2+80х+16; 15х^2-26х-8=0; х=2; х=-4/15 (отрицательный корень нам не нужен); 6) гипотенуза равна: 13х=13*2=26; один катет равен: 3х+4=3*2+4=10; второй катет равен: 10х+4=10*2+4=24; ответ: 10; 24; 26
Кстати, а у тебя что решается? Напиши в сообщение.
Смотри чертежь с решением. Дай лучшее решение))