Угол АВК = 180-угол АВС по теореме о смежных углах. А угол АВС равен 180-уголВАС-угол ВСА по теореме о сумме углов треугольника <=> угол АВК=180 - (180-угол ВАС - угол ВСА)=180-180+угол ВАС+угол ВСА = угол ВСА+угол ВАС
чтд)
1. Здесь образуются два подобных (по трем углам) треугольника (большой и малый). Для них можно записать соотношение:
1,7/4 = х/8+4
откуда
х = 1,7/4 * 12 = 3 * 1,7 = 5,1
ответ: 5,1
2. 0,5 * 4=2 метра
3.Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE.
Эти треугольники подобны, т.к.:
∠C - общий,
∠B и ∠DEC - прямые,
углы A и EDC - равны, так как являются соответственными.
Из подобия этих треугольников следует, что:
AB/DE=BC/EC
BC=(AB*EC)/DE=(9*1)/2=4,5.
В задаче нас интересует отрезок BE, BE=BC-EC=4,5-1=3,5.
ответ: 3,5
Дано: Треугольник АВС. Угол АВК - внешний.
Угол АВК = 180-угол АВС по теореме о смежных углах. А угол АВС равен 180-уголВАС-угол ВСА по теореме о сумме углов треугольника.
Следовательно, угол АВК=180 - (180-угол ВАС - угол ВСА)=180-180+угол ВАС+угол ВСА = угол ВСА+угол ВАС
чтд)