В сечении имеем равнобедренный треугольник МРК. МК = МР. Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4. Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP: (по условию МД = a/2, а КД = РД = a/4) PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) = = √((4a²+a²-2a²)/16 = (a√3) / 4. Высота h треугольника РМК равна: h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8. Искомая площадь равна: S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
если я верно перевела и "переліз" ---это "сечение", то
сечением будет прямоугольник, площадь которого = 160 = Н*(длину хорды)
(где Н ---высота цилиндра) => Н = 160 / (длину хорды)
длину хорды можно найти из равнобедренного треугольника, в котором основание ---искомая хорда, боковые стороны ---радиусы основания цилиндра (R),
высота треугольника (она же и медиана), проведенная к основанию = 6
по т.Пифагора (половина длины хорды)^2 = R^2 - 6^2 = 10^2 - 6^2 = (10-6)(10+6) = 4*16
половина длины хорды = 2*4 = 8
длина хорды = 8*2 = 16
Н = 160 / 16 = 10 (см)