Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6 апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8 0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально - пусть n боковых граней, s = 96/n сторона основания 24/n 0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
Дано: ΔАВС - прямокутний, ∠А=90°, АС=30 см, ВС=34 см; МК⊥ВС, ВМ=МС. Знайти МК.
Знайдемо АВ за теоремою Піфагора:
АВ=√(ВС²-АС²)=√(1156-900)=√256=16 см.
Проведемо ВК і розглянемо ΔВКС - рівнобедрений, тому що ВМ=СМ і МК⊥ВС, отже ВК=КС.
Нехай АК=х см, тоді КС=ВК=30-х см.
Знайдемо АК з ΔАВК - прямокутного:
АВ²=ВК²-АК²; 16² = (30-х)² - х²; 256=900-60х+х²-х²;
60х=900-256=644; х=10 11/15 см. АК=10 11/15 см, тоді
ВК = 30 - 10 11/15 = 19 4/15 = 289/15 см.
Знайдемо МК за теоремою Піфагора з ΔВМК, де ВМ=34:2=17 см.
МК²=ВК²-ВМ²=(289/15)² - 17² = (83521/225) - 289 = 18496/225.
МК=√(18496/225)=136/15=9 1\15 см.
Відповідь: 9 1/15 см.