1) CN=CD/2=BC => △BCN - равнобедренный, углы при основании равны, ∠CBN=∠CNB
∠ABN=∠CNB (накрест лежащие при AB||CD)
∠ABN=∠CBN, BN - биссектриса ∠ABC (делит угол на два равных)
2) Площади треугольников с равной высотой относятся как их основания. Обозначим площади ABK=8x, AKM=MKC=5x, ACK=10x. Площади треугольников с равным основанием относятся как их высоты. Высоты треугольников ABK и ACK относятся как 8:10. Следовательно площади BKP и CKP относятся как 8:10. Обозначим площади BKP=8y, BKC=18y. Площади BKC и MKC относятся как 8:5.
S(BKC)/S(MKC) =18y/5x =8/5
S(BKP)/S(AKM) =8y/5x =8/5 * 4/9 =32/45
Или по теореме Менелая:
CP/PB *BK/KM *MA/AC =1 <=> CP/PB *8/5 *1/2 =1 <=> CP/PB=10/8
CM/MA *AK/KP *PB/BC =1 <=> AK/KP *8/18 =1 <=> AK/KP=18/8
Площади треугольников с равным углом относятся как произведения сторон, заключающих равные углы.
S(BKP)/S(AKM) =BK*KP/AK*KM =8/5 *8/18 =32/45
10 см - меньшая сторона.
14 см - большая сторона.
Объяснение:
"Периметр прямоугольника 48 см. Найдите стороны прямоугольника, если одна из них на 4 см больше другой."
***
Пусть меньшая сторона прямоугольника равна x см. Тогда большая сторона равна x+4 см.
Периметр определяем по формуле:
P=2(a+b), где a=x см, а b=(x+4) см. Р=48 см.
2(х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см - меньшая сторона.
b=x+4=10+4=14 см - большая сторона.
Проверим:
2(10+14)=2*24=48 см - все верно.
***
На украинском:
Відповідь:
10 см-менша сторона.
14 см-велика сторона.
Пояснення:
"Периметр прямокутника 48 см. знайдіть сторони прямокутника, якщо одна з них на 4 см більше іншої."
***
Нехай менша сторона прямокутника дорівнює x см. тоді велика сторона дорівнює x + 4 см.
Периметр визначаємо за формулою:
P=2(a+b), де a=x см, а b=(x+4) см. р=48 см.
2 (х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см-менша сторона.
b=x + 4=10+4=14 см - велика сторона.
Перевірити:
2(10+14)=2*24=48 см - все вірно.
Гипотенуза будет равна V(8^2 + 6^2)=V100=10(см)
Sбок=(a+b+с)*H a=6см b=8см c=10см Sбок=120cм^2 H боковое ребро
H=Sбок/(a+b+c)
H=120/(6+8+10) = 120/24 = 5(см)
ответ. 5см