Если два треугольника имеют равный угол, то площади этих треугольников относятся как произведения сторон, заключающих этот угол.
Дано: ΔАВС, ΔА₁В₁С₁, ∠А = ∠А₁.
Доказать: Sabc /Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁) .
Доказательство:
Наложим треугольники так, чтобы угол А совместился с углом А₁, а стороны А₁В₁ и А₁С₁ лежали на лучах АВ и АС соответственно.
Проведем ВН - высоту ΔАВС. ВН является так же и высотой треугольника А₁ВС₁.
Площади треугольников, имеющих общую высоту, относятся как их основания (стороны, к которым проведена высота):
Sabc / Sa₁bc₁ = AC / A₁C₁ (1)
Проведем С₁Н₁ - высоту ΔА₁В₁С₁. С₁Н₁ является так же и высотой треугольника АВС₁, значит
Sabc₁ / Sa₁b₁c₁ = AB / A₁B₁ (2)
Перемножим равенства (1) и (2):
(Sabc / Sa₁bc₁) · (Sabc₁ / Sa₁b₁c₁) = (AC / A₁C₁) · (AB / A₁B₁)
Так как Sa₁bc₁ и Sabc₁ это площадь одного и того же треугольника, она сокращается и получаем:
Sabc / Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁)
Объяснение:
Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Выглядит схематично это так:
2см 6см
---------------|----------------|------------------------------------------|----------------->
X A B
Это справедливо и для случая:
6см 2см
------------------|------------------------------------------|-------------|--------->
A B X
Больше таких точек нет.