Стороны квадрата АВСD касаются сферы. Линия пресечения сферы плоскостью квадрата - вписанная в него окружность с диаметром КМ, равным стороне этого квадрата. Р(АВСD)=40 см ⇒ АВ =10 см.Тогда радиус вписанной в квадрат окружности r=КО1=10:2=5 см. Расстояние от цента сферы до плоскости квадрата равно длине отрезка, проведенного перпендикулярно к точке пересечения его диагоналей ( к центру окружности сечения).
Радиус сечения и расстояние от его центра до центра сферы - катеты прямоугольного треугольника КОО1, а радиус сферы КО - его гипотенуза. По т.Пифагора КО=√(KO²+OO1²)=13 см. Формула площади сферы S=4πR². ⇒ S-4π•169=676•π см² или 2123,7 см²
48°
Пошаговое объяснение:
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
110=6х+24+13х+10
19х=76
х=4
∠С=6*4+24=48°