Решение задач по теме "Площади четырехугольников и треугольников"
1. Высоты параллелограмма равны 3см и 5см, а периметр равен 16см.
Найдите площадь параллелограмма.
2. Основания и боковая сторона равнобедренной трапеции относятся как
10:4:5. Ее площадь равна 112 кв.см. Найдите периметр трапеции.
3. Сторона ромба равна 20см, а одна из диагоналей равна 24см.Найдите
площадь ромба.
Обозначим вершины треугольника А, В, С, а точки касания окружности с его сторонами:
на АС - К,
на СВ-Н,
на АВ-М
Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы .
Следовательно, АВ=2R=10см
По свойству касательных из одной точки к окружности
ВН=ВМ,
АМ=АК,
КС=СН
Пусть ВН=х
Тогда ВМ=х, а АМ=10-х
Катет СВ=х+1
Катет АС=АМ+1
АМ=10-х
катет АС=10-х+1=11-х
По теореме Пифагора выразим квадрат гипотеунзы АВ через сумму квадратов катетов:
АВ²=АС²+СВ²
100=(11-х)²+(1+х)²
После возведения в квадрат содержимого скобок и приведения подобных членов получим квадратное уравнение
2х²-20х+22=0
или, сократив на 2,
х²-10х+11=0
D=b²-4ac=-10²-44=56
х₁=(10+2√14):2=5+√14
х₂=5-√14
Отсюда
АС=11-5-√14=6-√14
ВС=1+5+√14=6+√14
Площадь прямоугольного треугольника равна половине произведения его катетов:
S=(6-√14)(6+√14):2=(36-14):2=11 cм²
Второй корень даст тот же результат, просто катеты «поменяются" размерами.
-----
[email protected]