Точка О очевидно(?) точка пересечения диагоналей данного параллелограмма, вектор MO+вектор FE+вектор OF+вектор EN=вектор MO+вектор OF+вектор FE+вектор EN=по правилу многоугольника=вектор MN
Далее вектор ME +вектор FM=вектор FM+вектор ME=по правилу треугольника=вектор FE
Так как MN и FE противоположные стороны даннного паралеллограмма, то длины векторов MN и FE равны, далее из определения параллелограмма как параллелограмма, они лежат на паралельных пряммых, и одинаково направлены, значит по определению равенства векторов вектор MN=вектор FE, что означает справедливость равенства данного в условии, что и требовалось доказать. Доказано
Трапеция АВСД, ВС=4, АД=22, АС=10, ВД=24, из точки С проводим прямую СК параллельную ВД до пересечения ее с продолжением основания АД в точке К, ДВСК параллелограмм ВС=ДК=4, АК=АД+ДК=22+4=26, периметр треугольника АСК=10+24+26=60, полупериметр (р)=60/2=3, площадьАСК (формула Герона)=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(30*20*6*4)=120 =площади трапеции (док-во: проведем высоту СН на АД, площадь АВСД=(ВС+АД)*СН/2, но ВС=ДК, значит ВС+АД=АК, тогда площадь треугольника=(АК*СН)/2, т.е площадь треугольника=площадь трапеции
Трапеция АВСД, ВС=4, АД=22, АС=10, ВД=24, из точки С проводим прямую СК параллельную ВД до пересечения ее с продолжением основания АД в точке К, ДВСК параллелограмм ВС=ДК=4, АК=АД+ДК=22+4=26, периметр треугольника АСК=10+24+26=60, полупериметр (р)=60/2=3, площадьАСК (формула Герона)=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(30*20*6*4)=120 =площади трапеции (док-во: проведем высоту СН на АД, площадь АВСД=(ВС+АД)*СН/2, но ВС=ДК, значит ВС+АД=АК, тогда площадь треугольника=(АК*СН)/2, т.е площадь треугольника=площадь трапеции
вектор MO+вектор FE+вектор OF+вектор EN=вектор MO+вектор OF+вектор FE+вектор EN=по правилу многоугольника=вектор MN
Далее вектор ME +вектор FM=вектор FM+вектор ME=по правилу треугольника=вектор FE
Так как MN и FE противоположные стороны даннного паралеллограмма, то длины векторов MN и FE равны,
далее из определения параллелограмма как параллелограмма, они лежат на паралельных пряммых, и одинаково направлены, значит по определению равенства векторов
вектор MN=вектор FE, что означает справедливость равенства данного в условии, что и требовалось доказать. Доказано