Отрезок DC - перпендикуляр к плоскости треугольника АВС. Найдите площадь треугольника АDB, если <АСВ = 90 °, АС = 5см, АВ = 13см, а угол между плоскостями АВС и АВD равен 45°.
Объяснение:
1) Т.к. угол между плоскостями АВС и АВD равен 45° , то построим линейный угол данного двугранного. Пусть DH ⊥AB, тогда по т. о трех перпендикулярах СН⊥АВ. Значит ∠СНD линейный угол данного двугранного ∠СНD =45°.
2)S(ABD)=1/2*АВ*DH .Найдем DH
3)ΔАВС-прямоугольный , по т. Пифагора СВ=√(13²-5²)=12 (см).
По метрическим соотношениям о среднем пропорциональном в прямоугольном треугольнике :
СВ²=АВ*НВ , 12²=13*НВ , НВ = (см) .
Тогда АН=АВ-НВ =13- = (см).
СН = , CH= (см).
4)ΔCHD-прямоугольный , ∠CHD=45° . sin45°= , = ,DH= см.
5) S(ABD)=1/2*13* =30√2 (см²).
решение смотри на фотографии