Объяснение:
1)Cначало построим треугольник AOB по 3 сторонам.
2)Построим на стороне AB как на диаметре окружность. И продолжим стороны AO и BO до пересечения с окружностью в точках L и S. То углы BLA и BSA прямые тк опираются на диаметр.
3) Продолжим стороны BL и AS до точки пересечения C.
То выходит что AL и BS этого треугольника высоты на стороны BC и AC. И они пересекаются в точке O. НО и само собой разумеющееся что 3 высота тоже пройдет через O. Тк все 3 высоты пересекаются только 1 раз в 1 точке в любом треугольнике. То есть мы построили наш треугольник ABC
∆АВС – прямоугольный с прямым углом АВС по условию;
Сумма острых углов в прямоугольном треугольнике равна 90°, тогда угол АСВ=90°–угол ВАС=90°–45°=45°.
Получим что угол ВАС=угол АСВ, следовательно ∆АВС – равнобедренный с основанием АС.
Тогда АВ=ВС=100.
∆ABD – прямоугольный с прямым углом ABD по условию.
Сумма острых углов в прямоугольном треугольнике равна 90°, значит угол ADB=90°–угол BAD=90°–60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, вдвое меньший гипотенузы.
Тоесть АВ=0,5*АD => АD=2*АВ=2*100=200.
По теореме Пифагора в прямоугольном ∆АВD:
AD²=AB²+BD²
200²=100²+BD²
40000–10000=BD²
BD=√30000
(BD=–√30000 не может быть, так как длина всегда положительна)
BD=100√3
CD=BD–ВС=100(√3)–100=100((√3)–1)
ответ: 100((√3)–1)