Ну, раз так трудно, я расставлю обозначения.
Если провести линию центров (О1О2) и радиусы в точки касания (О1В и О2С), то получится прямоугольная трапеция (О1О2СВ), то есть сумма центральных углов обеих дуг - дуги ВА и дуги СА между точками касания равна 180 градусов
(то есть угол ВО1А + угол СО2А = 180 градусов).
Если теперь провести общую касательную через точку касания окружностей (пусть это АМ, АМ - перпендикулярно О1О2), то искомый угол ВАС равен сумме двух углов (ВАМ и САМ), каждый из которых измеряется половиной одной из этих дуг (угол ВАМ равен половине угла ВО1А, или, что то же самое, "измеряется" половиной дуги АВ, и со второй дугой АС - аналогично). То есть в сумме они равны 90 градусов (уж и не знаю ,тут надо пояснять :(). ЧТД
1=х
2=6х
3=х+28
сумма углов треугольника равна 180
х+6х+х+28=180
8х=180-28
8х=152
х=152÷8
х=19 -1 угол
6×19=114 -2 угол
19+28=47 -3 угол
19+114+47=180
ответ углы = 19, 47, 114