обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
угол КВО=45°
Объяснение:
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°