М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Black219911
Black219911
20.10.2022 08:05 •  Геометрия

Провели несколько измерений случайной величины: 6,18,17,14,4,22,18.найдите моду этого набора чисел

👇
Ответ:
avritsevich0116
avritsevich0116
20.10.2022

отсортируем ряд 4 ; 6; 14; 17; 18; 18; 22 модой будет являтся число 18

4,4(73 оценок)
Ответ:
NeviL1488
NeviL1488
20.10.2022

мода -  наиболее часто встречющееся число. А если их несколько то их среднее арфиметическое. В данном случае мода равна 18

4,5(48 оценок)
Открыть все ответы
Ответ:
Demongirl1
Demongirl1
20.10.2022

Задача 2.

\angle{AOD} = \frac{\pi}{3} = 60^{o}

Задача 3.

Проекциями прямых параллельных сторонам исходного параллелограмма будут прямые, проходящие через т. пересечения диагоналей и середины сторон у параллелограмма проекции

Объяснение:

Дано

АВСД - прямоугольник

АВ = 6 см

АД = 2√3 см

Найти

уг. м/ду АС и ВД

Решение

Очевидно, что АС и ВД - диагонали прямоугольника.

Обозначим т. пересечения как т. О

Тогда уг.АОД - искомый угол между диагоналями.

Обозначим

{\angle AOD} = \alpha

По св-вам прямоугольника, его диагонали равны и в т. пересечения делятся пополам. Т.е.

АО = ОС = ВО = ОД

По Т. Пифагора можно найти диагонали:

ВД² = АВ² + АД²

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2}

BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2} = \sqrt{36 + 4 \cdot3} \\ BD = \sqrt{48} = \sqrt{16\cdot3} = 4 \sqrt{3}

Соответственно

АС = ВД = 4√3

Рассмотрим тогда треугольник АОД, он равнобедренный, т.к.

AO = OD = \frac{4\sqrt3}{2} = 2 \sqrt{3}

Так же 2√3 равна и сторона АД нашего прямоугольника.

То есть - мы получаем, что

АО = ОД = АД = 2√3

Следовательно - ∆АОД равносторонний,

а это означает, что искомый угол AOД

\alpha = \angle{AOD} = \frac{\pi}{3} = 60^{o}

Для особо дотошных:

По Т. косинусов имеем:

\small {AD^2=AO^2+OD^2-AO\cdot OD \cdot 2\cos{ \alpha}}

Отсюда

{\cos{ \alpha} = \frac {AO^2+OD^2-AD^2}{2 \cdot AO\cdot OD }} \\ {\cos{ \alpha} = \frac {(2 \sqrt{3})^2 +(2 \sqrt{3})^2 -(2 \sqrt{3})^2 }{2 \cdot 2 \sqrt{3} \cdot 2 \sqrt{3} }} \\ { \cos \alpha = \frac {12 + 12 - 12}{2 \cdot12}} = \frac{12}{24} = \frac{1}{2} \\ \cos \alpha = \frac{1}{2} = \alpha = \frac{\pi}{3} = 60^{o}

4,5(13 оценок)
Ответ:
yulyatalko
yulyatalko
20.10.2022

В трапеции ABCD боковая сторона AB равна диагонали BD. Точка M  - середина диагонали AC. Прямая BM пересекает прямую CD в точке E. Докажите,  что BE = CE.

Объяснение:

К - точка пересечения прямой ВМ с основанием AD.

Рассмотрим треугольники АМК и СМВ:

АМ = МС по условию,

∠АМК = ∠СМВ как вертикальные,

∠МАК = ∠МСВ как накрест лежащие при пересечении параллельных прямых АК и ВС секущей АС, ⇒

ΔАМК = ΔСМВ по стороне и двум прилежащим к ней углам.

Следовательно, АК = ВС.

Если в четырехугольнике две противолежащие стороны равны и параллельны, то это параллелограмм.

Значит, АВСК параллелограмм. ⇒ СК = АВ.

АВ = BD по условию, ⇒ СК = BD.

В трапеции KBCD диагонали равны, значит она равнобедренная.

Тогда ∠BKD = ∠CDK.

∠ЕВС = ∠BKD и ∠ЕСВ = ∠CDK как накрест лежащие при пересечении параллельных прямых KD и ВС секущими EК и ED соответственно, ⇒

∠EBC = ∠ECB.

Из этого следует, что треугольник ЕВС равнобедренный и

ВЕ = СЕ.


Втрапеции abcd боковая сторона ab равна диагонали bd. точка m  середина диагонали ac. прямая bm пер
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ