Объяснение:
1.Градусная мера дуги, на которую опирается центральный угол, равна 80 °. Определить градусную меру этого угл
а) 120° б) 80° в) 40°г) 50°
Центральный угол равен градусной мере дуги, на которую опирается. Поэтому ответ б) 80 градусов
2.Градусная мера центрального угла равна 120 °. Определить градусную меру дуги, на которую он опирается.
Из аналогичных соображений ответ г) 120 градусов.
а) 160° б) 90° в) 60°г) 120°
3.Градусная мера вписанного угла равна 140 °. Определить градусную меру дуги, на которую он опирается.
Вписанный угол равен половине градусной меры дуги на которую опирается. Поэтому градусная мера дуги равна 140*2 = 280 градусов. ответ в) 280 градусов.
а) 100° б) 70° в) 280°г) 140°
4.Градусная мера дуги, на которую опирается вписанный угол, равна 90°.Определить градусную меру этого вписанного угла.
Из аналогичных соображений, вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, угол равен 90/2 = 45 градусов. ответ б) 45 градусов.
а) 100° б) 45° в) 180°г) 90°
5.Определить градусную меру угла, вписанного в окружность, если соответствующий ему центральный угол равен 126 ° .
Центральный угол равен градусной мере дуги, на которую опирается, а вписанный угол половине дуги. Следовательно, вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ответ а) 63 градуса.
а) 63° б) 252° в) 180°г) 126°
6.Определить градусную меру центрального угла окружности, если градусная мера соответствующего ему вписанного угла равна 40 ° .
Из аналогичных рассуждений, центральный угол в 2 раза больше вписанного угла, опирающегося на ту же дугу. ответ г) 80 градусов.
а) 40° б) 20° в) 140°г) 80°
Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.
1) ∠ADC+∠BCD=180º (как сумма внутренних односторонних углов при параллельных прямых AD и BC и секущей CD);
2) так как точка O — точка пересечения биссектрис углов трапеции, то ∠ODF+∠OCF=1/2∙(∠ADC+∠BCD)=90º;
3) так как сумма углов треугольника равна 180º, то в треугольнике COD ∠COD=90º;
4) таким образом, треугольник COD прямоугольный, а OF — высота, проведенная к гипотенузе, CF и FD — проекции катета OC и OD на гипотенузу.
5) треугольник СОD (по теореме Пифагора):
CD^2 = CO^2 + OD^2
CD = корень [CO^2 + OD^2] = корень [3^2 + 4^2] = 5
6) Обозначим CF = m
тогда FD = 5-m
OF = r (радиус)
Треугольник СFО (по теореме Пифагора):
r^2 + m^2 = OC^2
r^2 + m^2 = 3^2
откуда r^2 = 9 - m^2
7) Треугольник ОFD (по теореме Пифагора):
r^2 + (5-m)^2 = OD^2
r^2 + (5-m)^2 = 4^2
Подставим из 6):
9 - m^2 + (5-m)^2 = 4^2
9 - m^2 + 5^2 - 2*5*m + m^2 = 4^2
9 + 25 - 10m = 16
10m = 18
m = 1.8
8) Подставим результат в 6):
r^2 = 9 - m^2 = 9 - 1,8^2 = 5,76
9) площадь круга S = П*r^2 = 5,76П ~ 18,096