площадь полной поверхности состоит из двух площадей оснований и боковой поверхности. В основании ромб, его площадь ищется по формуле сторона в квадрате умножить на синус угла между сторонами. Т.е. (2√3)²*√3/2= 6√3, но оснований два, поэтому эту площадь умножаем на два. получаем 12√3/см²/
Диагональ ромба по теореме косинусов равна √2(2√3)²-2*(2√3)²1/2=(2√3), а высота призмы находится как диагональ ромба умноженная на tg30°, т.е. (2√3)*(1/√3)=2.
Чтобы найти боковую поверхность, надо периметр основания, т.е. 8√3 умножить на высоту призмы, т.е. на 2 получим 16√3
Сложив теперь полученные площади оснований с площадью боковой поверхности, получим площадь полной поверхности. 12√3+16√3=28√3
ответ верный ответ под номером № 3) , т.е. 28√3
Удачи!
задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.
ответ: B) 5 см.
Объяснение:
Решение.
S=h(a+b)/2.
35=h(5+9)/2;
7h=35;
h=5 см.