Объяснение:Симетрі́я (від грец. συμμετρεῖν — міряти разом) — властивість об'єкта відтворювати себе при певних змінах, перетвореннях чи трансформаціях, які називаються операціями симетрії. Розрізняють симетрію тіл, симетрію властивостей і симетрію відношень[1].
Симетрія — передусім геометричне поняття, однак воно застосовується також щодо негеометричних об'єктів у математиці загалом, інших науках: фізиці, хімії, біології, і в інших галузях людської діяльності: філософії, естетиці, соціології, мистецтві тощо.
Відсутність симетрії називають асиметрією. З другого боку, термін антисиметрія описує своєрідний вид симетрії.Витоки симетрії
Витоки поняття симетрії йдуть далеко в минуле до часів Вавилона, Стародавнього Єгипту й Стародавньої Греції. Вже у V-му столітті до н. е. великий філософ і геометр Піфагор вчив: «Число є сутністю усіх речей і організація Всесвіту в її визначеннях являє собою взагалі гармонійну систему чисел та їх відносин»[2]. Цим Піфагор хотів підкреслити найважливішу сторону побудови світу — це його впорядкованість, організованість, симетрію, а значить і красу. Однак аж до XIX-го століття симетрія як самостійний об'єкт дослідження не приваблювала вчених, вона представлялася як щось само собою зрозуміле, загальновідоме, що не підлягає вивченню. У XIX—XX століттях принцип симетрії набув суттєвого значення, особливо у фізиці й математиці.
Людська творчість у всіх своїх проявах тяжіє до симетрії. З цього приводу добре висловився французький архітектор Ле Корбюзьє. У своїй книзі «Архітектура ХХ століття» він писав: «Людині необхідним є порядок, без нього всі її дії втрачають узгодженість, логічний взаємозв'язок. Чим досконалішим є порядок, тим спокійнішою і впевненішою почувається людина. Вона робить умоглядні побудови, ґрунтуючись на порядку, який продиктований їй потребами її психіки, — це творчий процес. Творчість є актом впорядкування»[3].
Симетрія у геометрії
Геометрична фігура симетрична, якщо існують перетворення, при яких її точки змінюють своє розташування на площині або в просторі, однак фігура накладається сама на себе. Якщо частини такої фігури накладаються на інші частини, то ці частини називають симетричними між собою. В залежності від типу перетворень розрізняють різні види симетрії.
Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x.
Тогда очевидно
AN + CN = AC;
AN + x = AB;
CN + x = BC;
Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то
AN = (AC + AB - BC)/2;
Точно так же для треугольника ACD получается
AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать.
Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD;
или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N.
Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC.
Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника.
Поэтому (см. чертеж) ∠KO1O2 = ∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна
CP = 2R = 40;
сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20;
Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2 :) )