М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
полли43
полли43
06.05.2022 15:11 •  Геометрия

Кут С паралелограма АВCD дорівнює 45 градусів. Бісектриса кута D перетинає пряму АВ у точці Р такій, що АР-10см, ВР-2см. Знайдіть площу паралелограма АВСD​

👇
Ответ:
демлан
демлан
06.05.2022

ответ:  Р=36 см .

АВСД - параллелограмм , ДР - биссектриса,  ∠С=45° ,

ДР пересекает АВ в точке Р , а ВС в точке М .

АР=10 см ,  ВР=2 см    ⇒    АВ=10-2=8 см  ,   СД=АВ=8 см  как противоположные стороны параллелограмма .

ДР - биссектриса   ⇒   ∠СДР=∠АДР .

∠АДР=∠СМД  как накрест лежащие углы при АД || ВС и секущей ДР .

В ΔСМД два угла равны  ⇒   ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°

∠ВМР=∠СМД=67,5°  как вертикальные .

В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45°  как накрест лежащие углы при АР || СД и секущей ВС .

Но тогда в ΔВМР:  ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла:  ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .

Тогда ВС=СМ+ВМ=8 +2 =10 см   , АД=ВС=10 см

Периметр  Р=10+10+8+8=36 см .


Кут С паралелограма АВCD дорівнює 45 градусів. Бісектриса кута D перетинає пряму АВ у точці Р такій,
4,6(64 оценок)
Открыть все ответы
Ответ:
Stasonka
Stasonka
06.05.2022
Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Следовательно, двугранный угол при основании пирамиды равен линейному углу между высотой грани и ее проекцией на основание. Эта проекция - отрезок, соединяющий точку О, в которую проецируется высота пирамиды на основание пирамиды. Раз все двугранные углы равны, значит равны и эти отрезки и мы доказали пункт б).
Равенство этих проекций доказывает, что  точка О равноудалена от сторон треугольника. Это значит, что точка О - центр вписанной окружности в основание треугольника, то есть доказан пункт а).
Найдем длину проекции на плоскость основания высот боковых граней, проведенных из вершины пирамиды, или, как мы доказали, радиус вписанной в основание пирамиды окружности.
В равнобедренном треугольнике АВС BН - его высота, АН=НС=а/2.
Тогда АВ=АН/Cosα или AB=a/(2Cosα). BH=AB*Sinα или BH=a*Sinα/(2Cosα)=(а/2)*tgα.
Sabc=(1/2)*AC*BH или Sabc=(а/2)*(а/2)*tgα=(а²/4)*tgα.
Есть формула площади треугольника: S=p*r, где р - полупериметр,
r - радиус вписанной окружности. Тогда r=S/p или r=[(а²/4)*tgα]/p. p=2*AB+AC. Или
р=2*a/(2Cosα)+а=a/Cosα+а=а((1/Cosα)+1)=(а*(1+Cosα))/Cosα.
r=[(а²/4)*tgα]/[(а*(1+Cosα))/Cosα] или r=a*Sinα/[4(1+Cosα)].
ответ: r=a*Sinα/[4(1+Cosα)].

Основание пирамиды - равнобедренный треугольник с основанием а и углом при основании а. все двугранн
4,5(100 оценок)
Ответ:
kulakov2003
kulakov2003
06.05.2022
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
4,4(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ