ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
То есть эти треугольники равны, и - поскольку отрезки стороны между секущими "переходят" в отрезки секущих между сторонами (тоже момент интересный - точка пересечения однозначно определяется двумя прямыми, и если две прямые переходят в две другие прямые, то точка пересечения переходит в ... понятно :)), они тоже равны.
То есть это равенство отрезков не есть свойство только заданного треугольника, оно выполнено для произвольного треугольника.
Периметр каждого отсеченного треугольника равен сумме длин двух равных отрезков касательных из соответствующей вершины (в этом утверждении равенство касательных использовано дважды - равны отрезки касательной из вершины А и из вершин шестиугольника, ближайших к А, поэтому периметр равен .. ну, понятно).
Если обозначить отрезки касательных из вершины А за x, из B за y, из С за z, то
x + y = 5;
x + z = 7;
y + z = 6;
Откуда x = 3; (можно и остальные найти легко, y = 2; z = 4)
То есть периметр отсеченного треугольника с вершиной А равен 2*х = 6; периметр подобного ему исходного треугольника равен 5 + 6 + 7 = 18; то есть в 3 раза больше. Поэтому площадь малого треугольника равна 1/9 площади АВС.
Осталось сосчитать площадь АВС, например, по формуле Герона.
p = (5 + 6 + 7)/2 = 9; p - 5 = 4; p - 6 = 3; p - 7 = 2;
S^2 = 9*4*3*2; S = 6√6;
Поэтому площадь малого треугольника 2√6/3;