Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Объяснение:
#1
Угол 1 и угол 2 смежные. Сумма смежных углов равна 180 градусов => 180-43=137°-угол
Угол 3=углу 1 => угол 1 и угол 3-накрест.леж=> а||б по признаку накрест.леж углов
#2
Рассмотрим треугольники СОМ и КОА
1. Угол СОМ=углу КОА, тк вертикальные
2. МО=ОК, тк т.О середина отрезка МК
3. СО=ОА, тк т.О середина отрезка АС => треугольник СОМ=треугольнику КОА по двум сторонам и углу между ними
В равных треугольниках соответствующие элементы равны => угол КАО=углу ОСМ
Угол КАО и угол ОСМ -накрест.леж=> СМ||АК по признаку накрест.леж углов