Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.