У трикутнику ABC вписано коло, яке дотикається до сторін AB, AC і BC в точках P, F і M відповідно. Знайдіть AP, PB, BM, MC, CF і FA, якщо AB=8 см, BC= 6 см, AC= 12 см.
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
1) треугольник АВD - равносторонний ⇒ сторона АВ=АD АС - общая сторона для треугольников BAC и DAC угол ВАС = углу САD (т.к. АС биссектриса , которая делит ВАD пополам) ⇒ по 1 признаку равенства треугольников (по двум сторона и углу между ними) треугольник BAC = треугольнику DAC
3) т.к. МD= DК ⇒ ND - медиана, а т.к. ND ещё и высота ⇒ Δ МNК - равнобедренный ⇒ МN= КN МD= DК ND - общая для ΔMDN и ΔKDN ⇒ΔMDN = ΔKDN по 3 признаку (по трем сторонам)
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.