Разбираемся с чертежом. Есть трапеция АВСD, Проведена высота ВH. Диагонали взаимно перпендикулярны. Проведём из вершины С прямую, параллельную диагонали ВD. Построим Δ ACК. Этот Δ прямоугольный , равнобедренный ( АС = СК) Этот треугольник подобен ΔDDH ( по 1 признаку подобия) Значит, ΔBDH - равнобедренный. ΔАСК - прямоугольный. В нём АК ==22.По т. Пифагора СА^2 + CK^2 = 484, CA ^2 =242. CA - 11√2. А теперь ΔВH D. По т. Пифагора BH^2 + BD^2 = 242. DH^2 =121, BH = 11. Площадь трапеции равна произведению средней линии и её высоты. S = 11·11 = 121.
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
ΔАСК - прямоугольный. В нём АК ==22.По т. Пифагора СА^2 + CK^2 = 484,
CA ^2 =242. CA - 11√2.
А теперь ΔВH D. По т. Пифагора BH^2 + BD^2 = 242. DH^2 =121, BH = 11. Площадь трапеции равна произведению средней линии и её высоты.
S = 11·11 = 121.